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Optimal self-avoiding paths in dilute random medium
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The combined effects of bond-energy disorder and random-bond exclusion on optimal undirected self-
avoiding paths are studied by an original finite-size scaling method in two dimensions. For concentrations of
accessible bonds between the undirected and directed percolation thresholds, overhangs do not seem to change
the standard self-affine scaling regime characteristic of directed paths. At the undirected threshold the path
becomes fractal, with a fractal dimension equal to that of the minimal length path on the infinite cluster
backbone. At this point the optimal energy variance scales with timet as tvc (vc51.0260.05). Furthermore,
vc turns out to be exclusively determined by fluctuations in backbone geometry andnot by disorder in bond
energies. This scenario is qualitatively confirmed and extended by renormalization-group calculations on
hierarchical lattices.@S1063-651X~97!06102-3#

PACS number~s!: 05.40.1j , 64.60.Cn , 64.60.Ak
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I. INTRODUCTION

In the past decade, the study of directed paths~or poly-
mers! in random media~DPRM! has attracted much intere
since DPRM are relevant for issues such as domain wall
ferromagnets with random interactions@1#, interface growth
@2#, and the behavior of flux lines in high-Tc superconductors
@3,4#. For example, consider an interface between two op
sitely magnetized phases of a two-dimensional random Is
ferromagnet. At zero temperature and in the absence
magnetic field, this interface is a path on the dual latti
which minimizes the sum of nearest neighbor exchange
ergies of the bonds it crosses.~For convenience, in the fol
lowing, we will associate this exchange energy directly w
the dual lattice bonds.! We will refer to this as the optima
~energy! path. So far, in most cases, the properties of t
interface have been usually studied under the additiona
striction of allowing only directed paths@4#. Thus one ne-
glects the possibility of overhangs. However, such a rest
tion is not expected to be a necessary condition in orde
obtain a self-affine geometry at large length scales.
DPRM both the transverse width and the energy fluctuati
scale as a power of the longitudinal distance covered by
path. In the case of the transverse width, a power (z) less
than unity indicates self-affinity@4#.

The removal of the directedness constraint in the optim
path problem can be expected to lead to different phys
especially in situations when disorder is able to induce
crossover from self-affine to fractal geometry. In the ma
netic interface case, an example of such a disorder ca
found when a fraction 12p of the total number of neares
neighbor exchange energies is assumed to be infin
strong. These couplings give rise to bonds, on the dual
tice, which are forbidden for the interface. Besides these
bidden bonds, one still has disorder on the accessible bo
When the fractionp of accessible bonds is at the percolati
threshold valuepc , the optimal path is constrained withi
the infinite percolation cluster backbone, which is fractal@5#.
Moreover, the path cannot be shorter than the minimal len
551063-651X/97/55~4!/3859~6!/$10.00
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of a path between two points on the percolation clus
Since these minimal-length paths on a percolation cluster
also fractal, we reach the conclusion that the optimal p
must itself be fractal. One can also expect that
pc,p,pcd ~wherepcd is the directed percolation threshold!
the properties of the optimal path may differ in some
spects from those in the DPRM regime. Indeed, in this
gime of concentrations each optimal path must necessa
have some overhangs. It is then logical to ask~i! whether this
can lead to a new universality class of scaling behavior
~ii ! what the precise nature and location of the crosso
from the DPRM to the fractal regime is. The possible effe
on asymptotic behavior of excluding overhangs is a parti
larly debated issue in the context of interface growth mod
@6#, which are closely related to DPRM@4#.

The present paper is devoted to the investigation of
above issues. Besides studying the possible relevance of
figurations with overhangs between the two percolat
thresholds, we consider in detail the fractal regime at
undirected percolation threshold and the connection betw
the scaling properties of the optimal path and the incipi
infinite cluster’s geometry. We further address the quest
of whether energy fluctuations of the interface are de
mined purely by geometry~i.e. by bond exclusion effects! or
also by accessible-bond disorder when one is in the fra
regime.

We perform part of our study using a different type
finite size scaling analysis ind52. This is based on transfer
matrix methods for self-avoiding paths@14#. In view of the
presence of disorder and of the nonpolynomial complexity
transfer-matrix calculations, the information one can dr
from the finite-size analysis is necessarily uncertain and
complete. To corroborate the conclusions of this analysis
to gain a fuller, though still qualitative, insight, we also pe
form renormalization-group~RG! calculations on hierarchi-
cal models in which we can introduce an appropriate equ
lent of paths with overhangs.

This article is organized as follows. In Sec. II we intr
duce the model, present our finite-size scaling method,
3859 © 1997 The American Physical Society
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3860 55F. SENO, A. L. STELLA, AND C. VANDERZANDE
discuss the results that can be obtained with it. Section I
devoted to a discussion of RG results for a hierarchical v
sion of our model. Finally, in Sec. IV we present our co
clusions.

II. OPTIMAL PATHS AND FINITE-SIZE SCALING
IN D52

Following the discussion in the introduction, we defi
the following optimization problem. Consider a two
dimensional square lattice. A fraction 12p of nearest-
neighbor bonds is chosen at random and each is made
cessible ~infinite energy!. To each remaining bondb, a
random~finite! energyEb is given. These energies are ind
pendent, identically distributed random variables taken fr
a distributionP(Eb). For each given realization of bond en
ergies we can consider the set of~self-avoiding! paths, re-
stricted to have all steps on the accessible bonds, that
nect two given points on the same cluster of allowed bon
To each pathW we associate an energyEW given by:

EW5 (
bPW

Eb , ~2.1!

where the sum is over the bonds visited by the path. Hav
in mind a model for magnetic interfaces, we can interp
each energyEb as22Jb* , whereJb* is the exchange energ
between Ising spins at the ends of the edgeb* , dual tob. For
each such realization of random bond energies, we can
termine the pathW0 whose energy is minimal within the se
of paths connecting two points on the lattice. We will refer
this path as the optimal path. We are interested in the sca
properties of this path when the distance between the
points becomes large. Our optimization problem makes
sense as soon asp is strictly less than the bond percolatio
thresholdpc , which, for the present case, equals 1/2. Inde
the optimal-path properties are defined for us as avera
over all bond configurations, subject to the condition th
these configurations guarantee a connection with non
probability between infinitely distant points. The problem w
have defined is a nontrivial generalization of the DPR
problem. We know of only one study in which bond excl
sion was considered for the DPRM model; in it the abse
of overhangs limited the effects of exclusion and preven
the possibility of crossover to fractal geometry for the op
mal path@7#.

Indicating byEmin the energy of the optimal pathW0 and
by an overbar the average over quenched bond disorder
scalings of optimal path quantities in terms of longitudin
distancet are

lim
t→`

Emin;tD~11ctv1211••• !, ~2.2!

lim
t→`

DE;tv, ~2.3!

lim
t→`

w̄;tz, ~2.4!

lim
t→`

N̄;tD, ~2.5!
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whereDE andw are the fluctuations in energy and the tran
verse width of the optimal path, respectively. These qua
ties will be defined more precisely below.v1 is a subleading
exponent and it will be discussed later on in connection w
RG calculations on hierarchical lattices.N is the number of
steps of the optimal path. Finally,z is a roughness exponen
while D is a fractal dimension. In a fractal regimez51 and
D.1. If the optimal path is self-affine rather than fractal, w
expectz,1 andD51. Our goal is to determine all the sca
ing exponents in Eqs.~2.2!–~2.5! as functions ofp, in the
entire regimepc<p,1. This program is a real challeng
since the presence of overhangs in the possible path con
rations makes their number grow very fast witht. Indeed, the
counting of undirected paths is a problem of exponen
complexity in t. This is in contrast to the polynomial com
plexity of directed paths.

Let us consider a rectangular strip of lengtht and width
L on our square lattice~cf. Fig 1!. Imagine that in each
configuration of bonds we sample the energy of the optim
self-avoiding path, if any, contained in the strip and conne
ing, for example, the lower left corner of the strip with
point (t,y) on the right vertical edge (0<y,L). We denote
by E(t,L,y) the minimal energy for paths reaching the po
(t,y) and set

Emin~ t,L !5minyE~ t,L,y!. ~2.6!

Energy fluctuations in a given configuration can then
measured@8# by

DE~ t,L !5F 1

S~ t,L !(y @E~ t,L,y!2Emin~ t,L !#2G1/2, ~2.7!

where the sum goes over thosey values to which at least on
connecting path exists@and S(t,L) is the number of these
y values in the given disorder configuration#.

We denote byw(t,L) they value for which the minimum
in Eq. ~2.6! is reached and byN(t,L) the total number of
steps in the corresponding path. The quantitiesĒmin ,DE,w̄,
and N̄ correspond to those in Eqs.~2.2!–~2.5! with the dif-
ference that they also depend onL. In a strip of widthL the
scaling laws~2.2!–~2.5! have to be modified. Since the rati
w̄/L controls the crossover behavior, Eqs.~2.3! and ~2.5!
become, respectively,

lim
t→`

DE~ t,L !;tvFS tzL D , ~2.8!

FIG. 1. Strip configuration used in the transfer-matrix calcu
tions for L55. Thick lines represent the path, while dashed lin
represent forbidden bonds. Periodic boundary conditions are u
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55 3861OPTIMAL SELF-AVOIDING PATHS IN DILUTE . . .
lim
t→`

N~ t,L !;tDGS tzL D . ~2.9!

In order for these equations to be consistent with Eqs.~2.3!
and ~2.5!, the scaling functionsF(x) andG(x) should be-
come constant whenx is sufficiently small. On the othe
hand, at large x one should haveF(x);x2v/z and
G(x);x2(D21)/z, so that for larget the following results
hold:

DE~ t,L !;Lv/z, ~2.10!

N~ t,L !;tL ~D21!/z. ~2.11!

These last two equations can be further understood if
realizes that fortz@L, the path develops within an esse
tially one-dimensional lattice. We want to stress the imp
tance of the finite-size scaling relations~2.8! and~2.9! for the
present work. In the usual analysis~i.e., for the directed case!
the absence of overhangs allows an exact enumeration
large values oft and L and the scaling exponents can
easily obtained directly from Eqs.~2.2!–~2.5!. In our numeri-
cal work we have used the transfer-matrix approach to s
avoiding paths, introduced by Derrida@14#, to find all al-
lowed paths up to a certaint on a given configuration. Fo
each path we calculate the energy@according to Eq.~2.1!#
and the number of steps. These results are numerically e
We then perform an average over randomness on a M
Carlo basis and from this we calculate quantities such
DE(t,L) andN(t,L). In this way we are able to get accura
values up toL59. These relatively small values ofL make it
necessary to introduce the finite-size scaling~FSS! laws
~2.10! and ~2.11!.

Our data were collected fort<100, and samples of up t
43106 random bond configurations consistent with Eq.~2.1!
were generated to calculate quenched averages. We
formed calculations using forP(Eb) both a uniform distri-
bution on@0,1# and a two-valued distribution

P~Eb!5qd~Eb20!1~12q!d~Eb21!. ~2.12!

The results for exponents did not seem to depend on
distribution taken nor on the values ofq in Eq. ~2.12!, as
long as 0,q,1 strictly. Information on the scaling expo
nents could be obtained by fitting the data to Eqs.~2.10! and
~2.11!. In Fig. 2 we show some typical data.

The determination of (D21)/z was the most successfu
For a range ofp values including a substantial portion of th
interval @pc ,pcd#, the extrapolations of this quantity wer
very close to 0, indicatingD51 and thus a self-affine geom
etry of the path~see Table I!. This means that in the regio
pc&p<pcd , overhangs are not able to induce a fractal
gime and are not present at sufficiently large length sca
The extrapolations ofv/z based on Eq.~2.10! are somewhat
less successful. Forp values close to 1 (p*0.8), v/z ex-
trapolates to 0.4060.04, which is below the value of th
DPRM in two dimensions (v/z51/2). Since this underesti
mation holds starting fromp51, e.g. from a case in which
DPRM behavior is expected, we interpret it as due to v
slow convergence of our data forv/z. However,v/z ex-
trapolates to definitely higher values oncep;pcd
e
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(v/z'0.9), suggesting that presumably slow crossover
the fractal regime has already started there. It is thus har
conclude whether the universality class of the self-affine
gime in pc,p,pcd is still the standard DPRM one. How
ever, this seems plausible and further evidence is given
Sec. III.

A crossover to a fractal regime is detected in bo
(D21)/z and v/z when we approachpc from above. As
mentioned already, the crossover forv/z starts much earlier,
in fact, causing the poorer analysis forp!pcd . Exactly at

FIG. 2. Numerical results forL59,p5pc . ~a! Results for
DE(t,L) ~b! results forN(t,L). Data are for a uniform distribution
of bond energies.

TABLE I. Results forN(t,L)/t versusL and the resulting val-
ues for (D21)/z at pc,p50.6,pcd together with similar results
for DE(t,L) andv/z at p50.8. In both calculations the bond en
ergies were taken from a uniform distribution on@0,1# and repre-
sent the result for larget when the asymptotic behavior visible i
Fig. 2 has set in.

L N(t,L)/t (D21)/z DE(t,L) v/z

4 1.412 0.3448
5 1.457 0.141 0.3905 0.56
6 1.488 0.115 0.4277 0.50
7 1.510 0.095 0.4592 0.46
8 1.528 0.089 0.4865 0.43
9 1.538 0.055 0.5113 0.42
L→` 20.0160.03 0.4060.04
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p5pc our extrapolations are (Dc21)/z50.1360.04 and
vc /zc51.0260.05. Assumingzc51, as appropriate to a
fractal regime, these values implyDc51.1360.04 and
vc51.0260.05. These estimates follow from analyzing da
for different energy distributions. In Table II some typic
data are given for the case of a two-valued energy distr
tion with q50.5. The determination ofDc is consistent with
the existing estimates of the fractal dimension of the shor
path within the backbone of the infinite incipient cluster
percolation@13#. It clearly makes sense that the disorder
accessible bond energies is not able to increaseDc above its
lower bound in the fractal regime. However, this disord
could play a substantial role invc . To investigate whethe
vc is determined by the bond exclusion alone or also by
randomness of accessible bonds we made, atpc , a nonran-
dom choice for the energies of these bonds. Remarka
enough, we could not detect a significant change in the
trapolated value ofvc /zc . This suggests that in the fracta
regime of the optimal path, geometry~through the effect of
bond exclusion! is the only factor determining energy fluc
tuations. In other words,vc comes from the fluctuations in
length of the shortest path through a percolation backbo
with negligible contribution from bond-energy fluctuations

III. RESULTS FOR HIERARCHICAL MODELS

Because of the limitations of our FSS analysis, we a
address the main physical using hierarchical models. If n
good quantitative approximation, hierarchical models sho
at least provide a rather complete qualitative picture of
properties of Euclidean models. Derrida and Griffiths@9# did
pioneering work in the application of hierarchical lattices
the study of DPRM@4#. More recently Le Doussal an
Machta@10# studied self-avoiding walks in random enviro
ment.

Let us consider a hierarchical lattice obtained by follo
ing the iteration procedure illustrated in Fig. 3~a!: We call
the resulting lattice the hierarchical diamond lattice with
diagonal bond~DDHL!. So far, only diamond hierarchica
lattices without diagonals~DHL! @Fig. 3~b!# have been con-
sidered for the study of DPRM@11#. However, since in a
DHL all paths joining the extremes have the same leng
this lattice does not allow a distinction between ‘‘directed
and ‘‘undirected’’ paths.

In our DDHL we regard as directed a path of minim

TABLE II. Data similar to those in Table I, but now atpc . In
this table data are given for a two-valued bond-energy distribu
with q50.5. The estimates reported in the text are based also on
comparison of results obtained with different distributions of bo
energies.

L N(t,L)/t (D21)/zc DE(t,L) vc /zc

4 1.415 0.8634
5 1.472 0.177 1.081 1.01
6 1.519 0.172 1.303 1.02
7 1.553 0.143 1.528 1.03
8 1.582 0.139 1.747 1.00
9 1.612 0.159 1.980 1.06
L→` 0.1160.04 1.0660.04
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length joining the extrema, i.e., a path never passing throu
a diagonal at any stage of lattice construction. Paths not s
isfying this condition will be called undirected. On the
DDHL we can also distinguish between a directed percol
tion thresholdpcd and an undirected onepc . The directed
threshold is reached when the concentrationp of accessible
bonds ceases to guarantee connectivity of the infinite latti
ends through directed paths. Simple RG calculations gi
pcd5(A521)/2 and pc51/2 for bond percolation on the
DDHL.

To set up our RG treatment, we consider the joint energ
length probability distribution for optimal paths at each leve
n of lattice construction.n50 corresponds to a single bond
~end-to-end distance 2°51) and, consistently with the dis-
cussion in Sec. II, we must choose

P0~E,N!5dN,1@~12p!d~E2`!1pP~E!#. ~3.1!

HereP(Eb) is again taken as either a uniform distribution o
@0,1# or a two-valued distribution such as that given by Eq
~2.12!. In Eq.~3.1! N is the optimal path length.Pn11 can be
recursively constructed fromPn as

Pn11~E,N!5 (
$Na%

E )
a51

5 FdEaPn~Ea ,Na!

3dS E2minW (
bPW

EbD dN, (
gPWmin

NgG .
~3.2!

In Eq. ~3.2! a labels the five bonds of a diamond cell with
diagonal@Fig. 3~a!#. W are all the distinct self-avoiding, un-
directed paths crossing the cell, andWmin indicates the opti-
mal one among them, whose steps are labeled byg. Of
course, like P0, Pn contains a term proportional to
d(E2`), corresponding to the events in which there is n
path crossing then-th level lattice. By construction, the co-

n
he

FIG. 3. Iterative construction of the two hierarchical lattices:~a!
DDHL lattice ~the bonds are numbered and the paths to be cons
ered in the iterative RG calculation are 1,3; 1,5,4; 2,4; 2,5,3!; ~b!
DHL lattice, ~c! hierarchical lattice withpc50.708 30 . . . and
pcd50.725 78 . . . , and ~d! hierachical lattice with
pc50.549 84 . . . andpcd50.551 94 . . . .
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55 3863OPTIMAL SELF-AVOIDING PATHS IN DILUTE . . .
efficient of this term coincides with thenth iterated of the
RG transformation for undirected percolation@5# on DDHL,
in which eachn51 diamond is scaled to a single bond:

p85~2p325p212p12!p2. ~3.3!

Thus, whenp.pc the concentration of accessible bon
grows to p51 under iteration, while atp5pc51/2 it re-
mains fixed.

Iteration of Eq.~3.2! cannot be performed exactly. So w
used a simple and very accurate Monte Carlo sampling s
egy to follow the evolution ofPn .

We start by collecting a large sample of energies a
lengths distributed according to Eq. ~3.1!:
$(Ei

(0) ,Ni
(0))%,i51,2, . . . ,imax( imax<106). From this

sample, groups of five pairs are collected at random and e
pair is assigned to theath bond of the diamond cel
(a51,2, . . . ,5). Forthis arrangement the total energy a
length of the optimal path in the cell is sought and stored
one of the elements (Ei

(1) ,Ni
(1)), building up the sample for

P1. This procedure can be iterated several times before s
ous problems arise due to the limited accuracy and samp

Knowledge ofPn allows the determination of quantitie
such asEmin , DE, or the average optimal path lengthN̄ as a
function of the initial conditions and oft[2n. We could
normally push our calculations ton520. The advantage o
the iterative procedure is that it allows the extraction of
liable information on behaviors at very large length sca
without actually implementing a simulation of the system
the corresponding size.~This would require at least som
520 random bond energies forn520.) This is the advantag
of the RG procedure, which exploits the hierarchical nat
of the problem for the iteration of the sampling ofPn .

For our model on DDHL we first considered the ca
p.pcd , with energy disorder specified byq51/2 @see. Eq.
~2.12!#. With respect to the DHL case, the asymptotic regi
here is not modified by the presence of undirected confi
rations. Indeed, we findv5 ln(1.230 . . . )/ ln(2);0.30,
which coincides, within the numerical accuracy, with t
value obtained in Ref.@9#. On DHL this v is expected to
correspond to the DPRM valuev51/3 on a square lattice
@4#.

By assuming validity of the scaling relation@1,4#

v52z21 ~3.4!

linking energy to length fluctuations, one also gets a rou
ness exponentz;0.65, obviously close to the DPRM valu
2/3 @12#. This result forp.pcd is certainly consistent with
what is expected to happen on Euclidean lattices, but
never explicitly verified so far in the hierarchical context,
our knowledge. Atp5pcd the path on DDHL behaves dif
ferently from that on DHL. Indeed, for DHL,p5pcd is the
percolation threshold, below which the optimization proble
loses meaning. One can verify that, atp5pcd ,
v;0.4960.02 on DHL, whilev;0.30 remains for DDHL.
A value ofv;0.50 was already found forT.0 on DHL in
Ref. @7#, where it was shown to be in agreement with t
transfer-matrix result, obtained in the same paper, for
rected paths on a square lattice (v50.5060.01).
t-
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Our results for the DDHL show that the directed thresho
is not ‘‘felt’’ at all by the undirected optimal path. We find
that, in the whole regionpc,p<pcd , v stays at 0.30. This
means that, even if optimal path configurations now cont
overhangs, these do not affect the large-scale behavior.
ther support of the conclusion that the optimal path on
DDHL is self-affine forpc,p<1 comes from a computation
of the fractal dimensionD, of the path, based on the scalin
N̄;(2n)D. With very high precision we findD51 over the
whole range. Notice that on the DHL, which in DDHL i
equivalent to requiring directedness,D51 would hold by
construction. Thus we conjecture that self-affine DPRM b
havior withv51/3 andz52/3 should hold for optimal self-
avoiding paths on square lattice as long asp.pc .

Of particular interest is the casep5pc51/2 on the
DDHL. For this threshold case we findvc51.0460.05. As-
suming validity of Eq. ~3.4!, v51 would correspond to
z51, the limiting value at which self-affinity changes int
fractality. However, it is not clear whether Eq.~3.4! should
hold in this situation. For example at the directed percolat
threshold in two dimensions directed paths do not sat
such a scaling law@7#.

The fractal character of the path atp5pc is demonstrated
by our resultDc51.08560.005. In fact, the optimal path a
threshold is constrained to develop within the backbone
the infinite incipient percolation cluster, and we can try
identifyDc among the fractal dimensions of the backbone
the DDHL. As in the case of the Euclidean lattice discuss
in Sec. II, a natural candidate is the dimensionDmin of the
minimal length path across the backbone. One way to
this is to compareDc values for disordered bond energie
(q51/2, for example! with a case with no disorder (q50,
for example!. In the latter case, the optimal path has to c
incide with the minimal-length path; thusDc5Dmin must
hold. Remarkably, atp5pc we find no appreciable differ-
ences in theDc and vc estimates (vc51.0460.05) for
q51/2 andq50, vc51.0460.05. As already found in the
Euclidean case, the fact thatvc also remains unchange
whenq50 means that energy fluctuations in this regime
dominated by the geometrical backbone disorder: thus
conjecture thatvc has the geometrical interpretation of d
scribing the fluctuations of minimal chemical distance with
the backbone. The presence or absence of energy disord
the backbone bonds does not affect the value ofv, which is
just a direct manifestation of the incipient infinite clust
fluctuating statistical geometry.

Further evidence thatDc5Dmin comes from an exact RG
evaluation ofDmin for percolation on DDHL. The result is
Dmin5 ln(17/8)/ln251.089. This determination can be don
analytically within the RG scheme, by appropriately weig
ing, at p5pc , the lengths of all possible paths crossing
percolating cell and performing the average.

In order to obtain another example of the predictive va
of this kind of model calculations it is worth checking th
robustness ofvc with respect to modifications of the hiera
chical lattice. We used other lattices, with more complica
cells, reproducing more features of the square lattice. T
examples are reported in Figs. 3~c! and 3~d!. With similar,
somewhat more laborious RG calculations, we could confi
the scenario described above for the DDHL. In particular
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the percolation thresholds we determinedvc51.0260.05
@Fig. 3~c!# andvc51.0160.05 @Fig. 3~d!#, consistent with
the DDHL result. We should expect the results forvc in the
case of the lattices in Figs. 1~c! and 1~d! to represent a bette
approximation of the Euclidean exponent.

To elucidate further the meaning ofv in the case of frac-
tal optimal path, we also checked how Eq.~2.2! changes in
this case. Our data forEmin on DDHL could be fitted very
well for L52N by the form

Emin~L !;aLDmin1bLv1c, L@1, ~3.5!

with Dmin51.08 andv1c51.0160.03. The agreement o
v1c in Eq. ~3.5! with the exponentvc describingDE sug-
gests an asymptotic distribution

Qn~E!5(
N

Pn~E,N!5
1

Lvc
f SE2Emin~L !

Lvc D ~E,`!

~3.6!

of optimal path energies. Thusvc should be the only scaling
dimension for energy in the fractal regime atpc .

IV. CONCLUSION

In this paper we carried out a systematic study of optim
undirected self-avoiding paths in a random medium with
fraction of forbidden bonds. We wanted to establish to w
extent removal of directedness and bond exclusion up to
percolation threshold can lead to different physics for
optimal path solution.

In view of the considerable complexity associated w
counting undirected paths, we had to devise an original F
analysis to extract information on the optimal-path scaling
two dimensions. The main advantage of this strategy is t
by confirming the path within strips of widthL, useful ex-
trapolations can already be made with relatively smallL. We
ng

J.
l
a
t
e
e

S
n
t,

are confident that our FSS approach will be useful for ot
problems of complex optimization.

Our FSS results on a square lattice suggest that cross
to fractal behavior (D.1) occurs for the path only a
p5pc . It is less clear, however, whether the self-affine
gime with pc<p<pcd , where overhangs are necessar
present, still belongs to the DPRM universality class, spec
cally whether the exponentv does not change. Convergenc
of the ratiov/z from our FSS seems to be much poorer th
that of (D21)/z.

The results for the fractal regime atp5pc are more con-
clusive. It appears most plausible thatDc coincides with the
dimension of the shortest path in the percolation clus
backboneDmin and vc51.0260.05 merely reflects the
length fluctuations of this shortest path. Thus, in the frac
optimal-path regime the bond-energy probability distributi
P plays no appreciable role in the sense of determinin
nontrivial stable law for minimal energy fluctuations. Geom
etry alone seems to control the optimal-path scaling reg
at the percolation threshold, in contrast with what happen
self-affine regimes.

All the above conjectures were qualitatively reinforc
and extended by means of our analysis of undirected p
on DDHL and similar lattices. Besides confirming the cruc
role of percolative geometry for the scaling of undirect
optimal paths atpc , the hierarchical calculations gave a nic
demonstration that nothing dramatic happens atp5pcd : the
scaling exponent of energy fluctuations remains the sam
for the DPRM case over the whole rangepc,p<pcd . Thus
we expect that, also in the Euclidean case, overhangs are
important at large scales in the regimep,p<pcd and do not
affect whatsoever the scalings of the optimal path.
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