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Optimal self-avoiding paths in dilute random medium
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The combined effects of bond-energy disorder and random-bond exclusion on optimal undirected self-
avoiding paths are studied by an original finite-size scaling method in two dimensions. For concentrations of
accessible bonds between the undirected and directed percolation thresholds, overhangs do not seem to change
the standard self-affine scaling regime characteristic of directed paths. At the undirected threshold the path
becomes fractal, with a fractal dimension equal to that of the minimal length path on the infinite cluster
backbone. At this point the optimal energy variance scales with tiest “c (w.=1.02+0.05). Furthermore,
w¢ turns out to be exclusively determined by fluctuations in backbone geometryatg disorder in bond
energies. This scenario is qualitatively confirmed and extended by renormalization-group calculations on
hierarchical lattices.S1063-651X97)06102-3

PACS numbg(s): 05.40+j, 64.60.Cn , 64.60.Ak

I. INTRODUCTION of a path between two points on the percolation cluster.
Since these minimal-length paths on a percolation cluster are
In the past decade, the study of directed pdtirspoly-  also fractal, we reach the conclusion that the optimal path
mers in random medidDPRM) has attracted much interest must itself be fractal. One can also expect that for
since DPRM are relevant for issues such as domain walls ip.<p<p.q (Wherep.q is the directed percolation threshpld
ferromagnets with random interactiofi|, interface growth the properties of the optimal path may differ in some re-
[2], and the behavior of flux lines in highz superconductors spects from those in the DPRM regime. Indeed, in this re-
[3,4]. For example, consider an interface between two oppogime of concentrations each optimal path must necessarily
sitely magnetized phases of a two-dimensional random Isingave some overhangs. It is then logical to éskvhether this
ferromagnet. At zero temperature and in the absence of ean lead to a new universality class of scaling behavior and
magnetic field, this interface is a path on the dual lattice(ii) what the precise nature and location of the crossover
which minimizes the sum of nearest neighbor exchange erfrom the DPRM to the fractal regime is. The possible effect
ergies of the bonds it crossg$or convenience, in the fol- on asymptotic behavior of excluding overhangs is a particu-
lowing, we will associate this exchange energy directly withlarly debated issue in the context of interface growth models
the dual lattice bondsWe will refer to this as the optimal [6], which are closely related to DPRM].
(energy path. So far, in most cases, the properties of this The present paper is devoted to the investigation of the
interface have been usually studied under the additional reabove issues. Besides studying the possible relevance of con-
striction of allowing only directed pathigt]. Thus one ne- figurations with overhangs between the two percolation
glects the possibility of overhangs. However, such a restricthresholds, we consider in detail the fractal regime at the
tion is not expected to be a necessary condition in order tandirected percolation threshold and the connection between
obtain a self-affine geometry at large length scales. Fothe scaling properties of the optimal path and the incipient
DPRM both the transverse width and the energy fluctuationifinite cluster's geometry. We further address the question
scale as a power of the longitudinal distance covered by thef whether energy fluctuations of the interface are deter-
path. In the case of the transverse width, a powgrléss  mined purely by geometrgi.e. by bond exclusion effectsr
than unity indicates self-affinitj4]. also by accessible-bond disorder when one is in the fractal
The removal of the directedness constraint in the optimalregime.
path problem can be expected to lead to different physics, We perform part of our study using a different type of
especially in situations when disorder is able to induce dinite size scaling analysis iti=2. This is based on transfer-
crossover from self-affine to fractal geometry. In the mag-matrix methods for self-avoiding patfig4]. In view of the
netic interface case, an example of such a disorder can @esence of disorder and of the nonpolynomial complexity of
found when a fraction & p of the total number of nearest- transfer-matrix calculations, the information one can draw
neighbor exchange energies is assumed to be infinitelfrom the finite-size analysis is necessarily uncertain and in-
strong. These couplings give rise to bonds, on the dual lattomplete. To corroborate the conclusions of this analysis and
tice, which are forbidden for the interface. Besides these forto gain a fuller, though still qualitative, insight, we also per-
bidden bonds, one still has disorder on the accessible bond®rm renormalization-grougRG) calculations on hierarchi-
When the fractiorp of accessible bonds is at the percolationcal models in which we can introduce an appropriate equiva-
threshold valuep., the optimal path is constrained within lent of paths with overhangs.
the infinite percolation cluster backbone, which is fragfl This article is organized as follows. In Sec. Il we intro-
Moreover, the path cannot be shorter than the minimal lengtlduce the model, present our finite-size scaling method, and
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discuss the results that can be obtained with it. Section Il is
devoted to a discussion of RG results for a hierarchical ver-
sion of our model. Finally, in Sec. IV we present our con-
clusions. L

«©y

Il. OPTIMAL PATHS AND FINITE-SIZE SCALING
IN D=2
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Following the discussion in the introduction, we define

the following optimization problem. Consider a two-  FIG. 1. Strip configuration used in the transfer-matrix calcula-
dimensional square lattice. A fraction—Ip of nearest- tions for L=5. Thick lines represent the path, while dashed lines
neighbor bonds is chosen at random and each is made inapresent forbidden bonds. Periodic boundary conditions are used.
cessible (infinite energy. To each remaining bondh, a
random(finite) energyE, is given. These energies are inde- whereAE andw are the fluctuations in energy and the trans-
pendent, identically distributed random variables taken fromverse width of the optimal path, respectively. These quanti-
a distributionP(E,). For each given realization of bond en- ties will be defined more precisely below, is a subleading
ergies we can consider the set (8Elf-avoiding paths, re- exponent and it will be discussed later on in connection with
stricted to have all steps on the accessible bonds, that coRG calculations on hierarchical lattice¥.is the number of
nect two given points on the same cluster of allowed bondssteps of the optimal path. Finally,is a roughness exponent,
To each patiW we associate an enerdsyy, given by: while D is a fractal dimension. In a fractal reginfe=1 and
D> 1. If the optimal path is self-affine rather than fractal, we

2.1) expect{<1 andD=1. Our goal is to determine all the scal-

' ing exponents in Eqs2.2—(2.5 as functions ofp, in the

entire regimep.<p<1. This program is a real challenge

where the sum is over the bonds visited by the path. Havingince the presence of overhangs in the possible path configu-
in mind a model for magnetic interfaces, we can interpretations makes their number grow very fast withndeed, the
each energ¥, as—2J,«, whereJy is the exchange energy counting of undirected paths is a problem of exponential
between Ising spins at the ends of the ed§edual tob. For  complexity int. This is in contrast to the polynomial com-
each such realization of random bond energies, we can dlexity of directed paths.
termine the patiW, whose energy is minimal within the set Let us consider a rectangular strip of lengtnd width
of paths connecting two points on the lattice. We will refer toL on our square latticécf. Fig 1). Imagine that in each
this path as the optimal path. We are interested in the scalingonfiguration of bonds we sample the energy of the optimal
properties of this path when the distance between the tweelf-avoiding path, if any, contained in the strip and connect-
points becomes large. Our optimization problem makes ning, for example, the lower left corner of the strip with a
sense as soon gsis strictly less than the bond percolation point (t,y) on the right vertical edge @y<L). We denote
thresholdp,, which, for the present case, equals 1/2. Indeedby E(t,L,y) the minimal energy for paths reaching the point
the optimal-path properties are defined for us as averaggs,y) and set
over all bond configurations, subject to the condition that
these configurations guarantee a connection with nonzero Emin(t,L) =min E(t,L,y). (2.6)
probability between infinitely distant points. The problem we
have defined is a nontrivial generalization of the DPRMEnergy fluctuations in a given Conﬁguration can then be
problem. We know of only one study in which bond exclu- measured8] by
sion was considered for the DPRM model; in it the absence
of overhangs limited the effects of exclusion and prevented 1 172
the possibility of crossover to fractal geometry for the opti-AE(t,L)= St L)Z [E(t,L,y)—Emn(t,L)1?| . (27
mal path[7]. Y

Indicating byE,;, the energy of the optimal pat, and
by an overbar the average over quenched bond disorder, t
scalings of optimal path quantities in terms of longitudinal
distancet are

Ew= > Ep,
beW

mg_here the sum goes over thog@alues to which at least one
connecting path existgand S(t,L) is the number of these
y values in the given disorder configuration

We denote byv(t,L) they value for which the minimum

lim E . ~tP(1+ctor14...), (2.2) In Eq.(2.6) is reached and bi(t,L) the total number of
t—oo steps in the corresponding path. The quantiigg,, AE,w,
o andN correspond to those in Eq&.2)—(2.5) with the dif-
lim AE~t“, (2.3 ference that they also depend bnin a strip of widthL the
t— scaling laws(2.2)—(2.5) have to be modified. Since the ratio
R w/L controls the crossover behavior, Ed8.3) and (2.5
lim w~t¢, (2.4 become, respectively,

t—oo

_ {
lim N~tP, (2.5 lim AE(t,L)~t‘°F(tE), (2.9

t—oo t—oo



55 OPTIMAL SELF-AVOIDING PATHS IN DILUTE ... 3861

t{ 0.15 T T T T T T
I|m N(t,L)NtDG —> . (29) e oooooo (a)
t—oo L N(t,L) Odﬁmwﬁ%mo ‘o e *
o o
In order for these equations to be consistent with Eg<S) o1 ° °

and (2.5), the scaling function$(x) and G(x) should be-
come constant whew is sufficiently small. On the other
hand, at largex one should haveF(x)~x"“/¢ and ,

G(x)~x" (P~ 5o that for larget the following results a8 T, i
hold:

p=0.5,L=9

AE(I’L)NL(U/{’ (21@ 0 I I ! | | |
0 10 20 30 40 50 60 70

N(t,L)~tL(P-V/¢, (2.11) !

These last two equations can be further understood if one

realizes that foté>L, the path develops within an essen- 100

tially one-dimensional lattice. We want to stress the impor- ' ' ' ' TS e
tance of the finite-size scaling relatio(’s8) and(2.9) for the AE(tL) OoooO

present work. In the usual analysi€., for the directed cage sor i i
the absence of overhangs allows an exact enumeration for o
large values oft and L and the scaling exponents can be 60 - \Cpoocp 1
easily obtained directly from Eq&2.2)—(2.5). In our numeri- OocpoO‘”°

cal work we have used the transfer-matrix approach to self- 40 P 1
avoiding paths, introduced by Derrida4], to find all al- &
lowed paths up to a certainon a given configuration. For 20 |- poc‘-”o 05100 8
each path we calculate the enefigccording to Eq(2.1)] o et

and the number of steps. These results are numerically exact. 0 L

We then perform an average over randomness on a Monte 0 o208 40 50 60 70
Carlo basis and from this we calculate quantities such as
AE(t,L) andN(t,L). In this way we are able to get accurate
values up td_=9. These relatively small values bfmake it
necessary to introduce the finite-size scalifi€sS laws
(2.10 and(2.11).

Our data were collected far= 100, and samples of up to (,/7~0.9), suggesting that presumably slow crossover to
4 10° random bond configurations consistent with E211)  the fractal regime has already started there. It is thus hard to
were generated to calculate quenched averages. We pfpnclude whether the universality class of the self-affine re-
formed calculations using foP(E,) both a uniform distri-  gime in p.<p<p.q is still the standard DPRM one. How-
bution on[0,1] and a two-valued distribution ever, this seems plausible and further evidence is given in

Sec. Il
P(Ep)=qd(Ep—0)+(1-)8(Ep—1). (212 A crossover to a fractal regime is detected in both

The results for exponents did not seem to depend on thfP —1)/¢ and w/{ when we approacip, from above. As
distribution taken nor on the values qgfin Eq. (2.12, as mentioned already, the crossover tat{ starts much earlier,

long as G<q<1 strictly. Information on the scaling expo- N fact, causing the poorer analysis for<p.q. Exactly at
nents could be obtained by fitting the data to E§s10 and
(2.13. In Fig. 2 we show some typical data.

The determination of[@ —1)/{ was the most successful.
For a range op values including a substantial portion of the
interval [p.,pcql, the extrapolations of this quantity were
very close to 0, indicatin@® =1 and thus a self-affine geom-
etry of the path(see Table)l This means that in the region

¢SP<p.q, Overhangs are not able to induce a fractal re- N(LL)/t (D-1)/¢ AE(LD) wll
gime and are not present at sufficiently large length scales i '

FIG. 2. Numerical results foL=9p=p.. (8 Results for
AE(t,L) (b) results forN(t,L). Data are for a uniform distribution
of bond energies.

TABLE |. Results forN(t,L)/t versusL and the resulting val-
ues for D—1)/{ at p.<p=0.6<p.q together with similar results
for AE(t,L) andw/ at p=0.8. In both calculations the bond en-
ergies were taken from a uniform distribution p@,1] and repre-
sent the result for large when the asymptotic behavior visible in
Fig. 2 has set in.

The extrapolations ob/{ based on E¢2.10 are somewhat 4 1.412 0.3448

less successful. Fgr values close to 1 {=0.8), w/{ ex- 5 1.457 0.141 0.3905 0.56
trapolates to 0.460.04, which is below the value of the 6 1.488 0.115 0.4277 0.50
DPRM in two dimensions ¢/{=1/2). Since this underesti- 7 1.510 0.095 0.4592 0.46
mation holds starting fronp=1, e.g. from a case in which g 1.528 0.089 0.4865 0.43
DPRM behavior is expected, we interpret it as due to very 1.538 0.055 0.5113 0.42
slow convergence of our data fes/{. However, w/{ ex- L —so0 —0.01*0.03 0.46-0.04

trapolates to definitely higher values once~p.q
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TABLE Il. Data similar to those in Table I, but now at. In
this table data are given for a two-valued bond-energy distribution
with g=0.5. The estimates reported in the text are based also on the

comparison of results obtained with different distributions of bond — —
energies.

L N(t,L)/t  (D—1)/{c  AE(t,L) ol (@ )
4 1.415 0.8634

5 1.472 0.177 1.081 1.01

6 1.519 0.172 1.303 1.02

7 1.553 0.143 1.528 1.03

8 1.582 0.139 1.747 1.00 — ——
9 1.612 0.159 1.980 1.06

L—oo 0.11+0.04 1.06:0.04

© @

P=Ppc our extrapolations areQ;~1)/¢=0.13+0.04 and FIG. 3. Iterative construction of the two hierarchical lattices:

wel o= l'O.Zt 0.05. Assumlnggc_: 1, as_ appropriate t a DDHL lattice (the bonds are numbered and the paths to be consid-
fractal regime, these va!ues implp.=1.13+ 0'04, and ered in the iterative RG calculation are 1,3; 1,5,4; 2,4; 2,313
w.=1.02+0.05. These estimates follow from analyzing datapy_ |attice, (c) hierarchical lattice withp.=0.70830... and

for different energy distributions. In Table 1l some typical Pq=0.725B..., and (d hierachical lattice  with
data are given for the case of a two-valued energy diStribUpC:0.54g 84... ang4=0.5519 ... .

tion with q=0.5. The determination db is consistent with

the existing estimates of the fractal dimension of the shortegength joining the extrema, i.e., a path never passing through
path within the backbone of the infinite incipient cluster of a diagonal at any stage of lattice construction. Paths not sat-
percolation[13]. It clearly makes sense that the disorder ofisfying this condition will be called undirected. On the
accessible bond energies is not able to incréasabove its  DDHL we can also distinguish between a directed percola-
lower bound in the fractal regime. However, this disordertion thresholdp.4 and an undirected ong.. The directed
could play a substantial role i@.. To investigate whether threshold is reached when the concentratoof accessible

. is determined by the bond exclusion alone or also by théonds ceases to guarantee connectivity of the infinite lattice
randomness of accessible bonds we mad@.ata nonran-  ends through directed paths. Simple RG calculations give
dom choice for the energies of these bonds. Remarkablpscdz(\/g_l)/z and p.=1/2 for bond percolation on the
enough, we could not detect a significant change in the exppHL.

trapolated value ofu./{.. This suggests that in the fractal  To set up our RG treatment, we consider the joint energy-
regime of the optimal path, geometfthrough the effect of |ength probability distribution for optimal paths at each level
bond exclusiohis the only factor determining energy fluc- n of lattice constructionn=0 corresponds to a single bond

tuations. In other wordsyp. comes from the fluctuations in (end-to-end distance 2°1) and, consistently with the dis-
length of the shortest path through a percolation backboneyyssion in Sec. I, we must choose

with negligible contribution from bond-energy fluctuations.
Po(E\N)=6na[(1-p)S(E—»)+pP(E)]. (3.1

lll. RESULTS FOR HIERARCHICAL MODELS HereP(E,) is again taken as either a uniform distribution on

Because of the limitations of our FSS analysis, we alsd 0,1] or a two-valued distribution such as that given by Eq.
address the main physical using hierarchical models. If not &.12. In Eq.(3.1) N is the optimal path lengtt®,, ; can be
good quantitative approximation, hierarchical models shouldecursively constructed fromR,, as
at least provide a rather complete qualitative picture of the 5
properties of Euclidean models. Derrida and Griffit@igdid
pioneering work in the application of hierarchical lattices to P”+1(E’N):{E} 11
the study of DPRM[4]. More recently Le Doussal and

dE,Pn(Es,N,)

Machta[10] studied self-avoiding walks in random environ-
ment. X 6 E_minwz EB 5N, E Ny:|'
Let us consider a hierarchical lattice obtained by follow- pew 7€ Win
ing the iteration procedure illustrated in Figa@ We call (3.2
the resulting lattice the hierarchical diamond lattice with a
diagonal bond(DDHL). So far, only diamond hierarchical ~ In Eq.(3.2) « labels the five bonds of a diamond cell with

lattices without diagonaléDHL) [Fig. 3(b)] have been con- diagonal[Fig. 3@]. W are all the distinct self-avoiding, un-
sidered for the study of DPRNI1L1]. However, since in a directed paths crossing the cell, aW,;, indicates the opti-
DHL all paths joining the extremes have the same lengthmal one among them, whose steps are labeledybyOf
this lattice does not allow a distinction between “directed” course, like Py, P, contains a term proportional to
and “undirected” paths. S(E—»), corresponding to the events in which there is no
In our DDHL we regard as directed a path of minimal path crossing tha-th level lattice. By construction, the co-
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efficient of this term coincides with theth iterated of the Our results for the DDHL show that the directed threshold
RG transformation for undirected percolatid] on DDHL, is not “felt” at all by the undirected optimal path. We find
in which eachn=1 diamond is scaled to a single bond: that, in the whole regiop.<p<p.q4, @ stays at 0.30. This
means that, even if optimal path configurations now contain
p'=(2p3—5p2+2p+2)p>. (3.3  overhangs, these do not affect the large-scale behavior. Fur-
ther support of the conclusion that the optimal path on the
Thus, whenp>p, the concentration of accessible bondsDDHL is self-affine forp.<p=1 comes from a computation
grows top=1 under iteration, while ap=p.,=1/2 it re-  of the fractal dimensio, of the path, based on the scaling
mains fixed. N~ (2"P. With very high precision we findd=1 over the
Iteration of Eq.(3.2) cannot be performed exactly. So we whole range. Notice that on the DHL, which in DDHL is
used a simple and very accurate Monte Carlo sampling straisquivalent to requiring directednesd,=1 would hold by
egy to follow the evolution of,. _ construction. Thus we conjecture that self-affine DPRM be-
We start by collecting a large sample of energies and,ayior with = 1/3 and¢=2/3 should hold for optimal self-
Ien%?s ©) distributed  ~according to Eq. 3.1 4y5iding paths on square lattice as longpasp..
{(BEY NO)WLi=12,. . imafima=10°). ~ From this Of particular interest is the casp=p.=1/2 on the
sample, groups of five pairs are collected at random and eaghy 1y “For this threshold case we fing, = 1.04+ 0.05. As-

pair is assigned to thexth bond of the diamond cell sumin - _
o ; g validity of Eq.(3.4), =1 would correspond to
(a=1,2,...,5). Forthis arrangement the total energy and =1, the limiting value at which self-affinity changes into

length of the optimal pla)lth i(r11)the c_eII_ Is sought and stored & ractality. However, it is not clear whether E(.4) should
one of_the eIements‘E(f ’N‘. ), building up th_e sample for hold in this situation. For example at the directed percolation
P,. This procedl_Jre can be |terf_;1te_d several times before >Mhreshold in two dimensions directed paths do not satisfy
ous problems arise due to the limited accuracy and samplin

o NPING eh a scaling laW7].
Knowledge ofP, allows the determination of quantities The fractal character of the path @t p. is demonstrated

such a£y,p, AE, or the average optimal path lendthas a ¢ regyitD = 1.085+0.005. In fact, the optimal path at

function of the initial conditions and of=2". We could ipreshold is constrained to develop within the backbone of
normally push our calculations to=20. The advantage of he jnfinite incipient percolation cluster, and we can try to
the iterative procedure is that it allows the extraction of '®dentify D, among the fractal dimensions of the backbone on
. . . . c

liable information on behaviors at very large length scalegye ppHL. As in the case of the Euclidean lattice discussed
without actually implementing a simulation of the system of, ga¢ ') " natural candidate is the dimensp,, of the

thzeo corresponding S|ze(:Th|s would require at least SOme  mjnimq| length path across the backbone. One way to test
57 random bond energies for=20.) This is the advantage s s to compared,, values for disordered bond energies
of the RG procedure, which exploits the hierarchical naturetqzll2 for example with a case with no disorderg&0

of the problem folr the iteration offt_he sampling Bﬁ'h for example. In the latter case, the optimal path has to co-
For our model on DDHL we first considered the casej .iqe with the minimal-length path; thud =D, must

P>Pcq, With energy disorder specified liy=1/2[see. EQ. 514 Remarkably, ap=p, we find no appreciable differ-

(2.12]. With respect to the DHL case, the asymptotic regimeences in theD, and w, estimates @.=1.04+0.05) for

here is not modified by the presence of undirected configu(-:]zll2 andq=0, w,=1.04+0.05. As already found in the
rations. I_nd_eed, we_f|ndw=|n(1.2_3)...)/In(2)~0._30, Euclidean case, the fact that, also remains unchanged
which c0|n.C|des., within the numencgl accuracy, with thewhenq=0 means that energy fluctuations in this regime are
value obtained in Refl9]. On DHL this w is expected _to dominated by the geometrical backbone disorder: thus we
correspond to the DPRM value=1/3 on a square lattice conjecture that, has the geometrical interpretation of de-
[4]. . - . . scribing the fluctuations of minimal chemical distance within
By assuming validity of the scaling relatiga, 4] the backbone. The presence or absence of energy disorder in
the backbone bonds does not affect the value oivhich is
w=2{-1 (3.4 just a direct manifestation of the incipient infinite cluster
fluctuating statistical geometry.
linking energy to length fluctuations, one also gets a rough- Further evidence thd =D, comes from an exact RG
ness exponerg~0.65, obviously close to the DPRM value evaluation ofD,,, for percolation on DDHL. The result is
2/3[12]. This result forp>p.q4 is certainly consistent with D ,;,=In(17/8)/In2=1.089. This determination can be done
what is expected to happen on Euclidean lattices, but waanalytically within the RG scheme, by appropriately weigh-
never explicitly verified so far in the hierarchical context, toing, at p=p., the lengths of all possible paths crossing a
our knowledge. Atp=p.q4 the path on DDHL behaves dif- percolating cell and performing the average.

ferently from that on DHL. Indeed, for DHLp=p.q is the In order to obtain another example of the predictive value
percolation threshold, below which the optimization problemof this kind of model calculations it is worth checking the
loses meaning. One can verify that, ap=p.q, robustness o with respect to modifications of the hierar-

®w~0.49+0.02 on DHL, whilew~0.30 remains for DDHL. chical lattice. We used other lattices, with more complicated
A value of w~0.50 was already found foF>0 on DHL in  cells, reproducing more features of the square lattice. Two
Ref. [7], where it was shown to be in agreement with theexamples are reported in FigsicBand 3d). With similar,

transfer-matrix result, obtained in the same paper, for disomewhat more laborious RG calculations, we could confirm
rected paths on a square lattice= 0.50+0.01). the scenario described above for the DDHL. In particular, at
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the percolation thresholds we determined=1.02£0.05 are confident that our FSS approach will be useful for other
[Fig. 3(c)] and w,=1.01+0.05 [Fig. 3(d)], consistent with problems of complex optimization.

the DDHL result. We should expect the results éyin the Our FSS results on a square lattice suggest that crossover
case of the lattices in Figs(d and 1d) to represent a better to fractal behavior P>1) occurs for the path only at
approximation of the Euclidean exponent. p=p.. It is less clear, however, whether the self-affine re-

To elucidate further the meaning afin the case of frac- gime with p.<p<p.q, where overhangs are necessarily
tal optimal path, we also checked how Ef.2) changes in present, still belongs to the DPRM universality class, specifi-
this case. Our data fdE,,, on DDHL could be fitted very cally whether the exponent does not change. Convergence

well for L=2N by the form of the ratiow/{ from our FSS seems to be much poorer than
that of (D—1)/¢.
Emin(L)~alLPmint b, L>1, (3.5 The results for the fractal regime pt=p. are more con-

. clusive. It appears most plausible tha¢ coincides with the
with Dpjn=1.08 and w;=1.01+0.03. The agreement of dimension of the shortest path in the percolation cluster
w;c in Eq. (3.5 with the exponentw, describingAE sug-  backbone D, and w,=1.02+0.05 merely reflects the

gests an asymptotic distribution length fluctuations of this shortest path. Thus, in the fractal
optimal-path regime the bond-energy probability distribution

O(E)=S P(EN)= 1 f(E—Emm(L)> (E<c0) P plays no appreciable role in the sense of determining a
N ' L@ L% nontrivial stable law for minimal energy fluctuations. Geom-

(3.6)  etry alone seems to control the optimal-path scaling regime
. . , at the percolation threshold, in contrast with what happens in
of optimal path energies. Thus; should be the only scaling gg|i-affine regimes.

dimension for energy in the fractal regimea{. All the above conjectures were qualitatively reinforced
and extended by means of our analysis of undirected paths

IV. CONCLUSION on DDHL and similar lattices. Besides confirming the crucial

In this paper we carried out a systematic study of optimafOIGf' of percolative geometry f(_)r the Sca"f‘g of undlrec.ted
optimal paths ap., the hierarchical calculations gave a nice

undirected self-avoiding paths in a random medium with a

fraction of forbidden bonds. We wanted to establish to Whapemonstratlon that nothing dramatu_: happenp_mpcd: the
caling exponent of energy fluctuations remains the same as

extent removal of directedness and bond exclusion up to th
P or the DPRM case over the whole rangg<p=<p.q. Thus

percolation threshold can lead to different physics for the . .
optimal path solution. we expect that, also in the Euclidean case, overhangs are not

In view of the considerable complexity associated with!Mmportant at large scales In the regipe P=pcq and do not
counting undirected paths, we had to devise an original FSé‘ffeCt whatsoever the scalings of the optimal path.
analysis to extract information on the optimal-path scaling in
two dimensions. The main advantage of this strategy is that,
by confirming the path within strips of width, useful ex- We are grateful to T. L. Einstein for a careful critical
trapolations can already be made with relatively sthaNVe  reading of the manuscript.
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